
CS 140
Class Notes 1

A Multiplication

Consider two unsigned binary numbers X and Y . We want to multiply these numbers. The
basic algorithm is similar to the one used in multiplying the numbers on pencil and paper. The
main operations involved are shift and add.

Recall that the ‘pencil-and-paper’ algorithm is inefficient in that each product term (obtained
by multiplying each bit of the multiplier to the multiplicand) has to be saved till all such product
terms are obtained. In machine implementations, it is desirable to add all such product terms to
form the partial product. Also, instead of shifting the product terms to the left, the partial product
is shifted to the right before the addition takes place. In other words, if Pi is the partial product
after i steps and if Y is the multiplicand and X is the multiplier, then

Pi ← Pi + xj ∗ Y

and
Pi+1 ← Pi ∗ 2−1

and the process repeats.

Note that the multiplication of signed magnitude numbers requires a straightforward extension
of the unsigned case. The magnitude part of the product can be computed just as in the unsigned
magnitude case. The sign p0 of the product P is computed from the signs of X and Y as

p0 ← x0 ⊕ y0

A.1 Two’s complement Multiplication - Robertson’s Algorithm

Consider the case that we want to multiply two 8 bit numbers X = x0x1...x7 and Y = y0y1...y7.
Depending on the sign of the two operands X and Y , there are 4 cases to be considered :

• x0 = y0 = 0, that is, both X and Y are positive. Hence, multiplication of these numbers is
similar to the multiplication of unsigned numbers. In other words, the product P is computed
in a series of add-and-shift steps of the form

Pi ← Pi + xj ∗ Y

Pi+1 ← Pi ∗ 2−1

Note that all the partial products are non-negative. Hence, leading 0s are introduced during
right shift of the partial product.

1



• x0 = 1, y0 = 0, that is, X is negative and Y is positive. In this case, the partial product is
always positive (till the sign bit x0 is used). In the final step, a subtraction is performed.
That is,

P ← P − Y

• x0 = 0, y0 = 1, that is, X is positive and Y is negative. In this case, the partial product
is positive and hence leading 0s are shifted into the partial product until the first 1 in X
is encountered. Multiplication of Y by this 1, and addition to the result causes the partial
product to be negative, from which point on leading 1s are shifted in (rather than 0s).

• x0 = 1, y0 = 1, that is, both X and Y are negative. Once again, leading 1s are shifted into the
partial product once the first 1 in X is encountered. Also, since X is negative, the correction
step (subtraction as the last step) is also performed.

A Word of Caution: A difference exists in the correction steps between multiplication of two
integers and two fractions. In the case of two integers, the correction step involves subtraction and
shift right. In the case of fractions, the correction step involves subtraction and setting Q(7) ← 0.

A.2 Basic Booth’s Algorithm

Recall that the preceding multiplication algorithms (Robertson’s algorithm) involves scanning
the multiplier from right to left and using the current multiplier bit xi to determine whether the
multiplicand Y be added, subtracted or add 0 (do nothing) to the partial product. In Booth’s
algorithm, two adjacent bits xixi+1 are examined in each step. If xixi+1 = 01, then Y is added to
the partial product, while if xixi+1 = 10, Y is subtracted from Pi (partial product). If xixi+1 = 00
or 11, then neither addition nor subtraction is performed. Thus, Booth’s algorithm effectively
skips over sequences of 1s and 0s in X. As a result, the total number of addition/subtraction steps
required to multiply two numbers decrease (however, at the cost of extra hardware).

The process of inspecting the multiplier bits required by Booth’s algorithm can be viewed as
encoding the multiplier using three digits 0, 1 and 1, where 0 means shift the partial product to
the right (that is, no addition or subtraction is performed), while 1 means add multiplicand before
shifting and 1 means subtract multiplicand from the partial product before shifting. The number
thus produced is called a signed digit number and this process of converting a multiplier X into
a signed digit form is called as multiplier recoding. To generate X∗ from X, append the number
X with a 0 to the right (that is, start with X = x0x1...xn−10). Then use the following table to
generate X∗ from X:

xi xi+1 x∗
i

0 0 0
0 1 1
1 0 1
1 1 0

Booth’s algorithm results in reduction in the number of add/subtract steps needed (as com-
pared to the Robertson’s algorithm) if the multiplier contains runs (or sequences) of 1s or 0s. The
worst case scenario occurs in Booth’s algorithm if X = 010101..01, where there are n/2 isolated 1s,

2



which forces n/2 subtractions and n/2 additions. This is worse than the standard multiplication
algorithm - which contains only n/2 additions.

B Division

In a fixed point division of two numbers, a divisor V and a dividend D are given. The goal of
division is to compute quotient Q and remainder R such that

D = Q ∗ V + R

One of the simplest methods of division is the sequential digit-by-digit algorithm. Here, in step
i, the quotient bit qi is determined by comparing the value of 2−iV , which represents the divisor
shifted i bits to the right, to the partial remainder Ri. The quotient bit qi is set to 1 if 2−i is less
than Ri, else it is set to 0. Thus, the partial remainder is computed using the expression:

Ri+1 = Ri − qi ∗ 2−i ∗ V

This is equivalent to
Ri+1 = 2Ri − qi ∗ V

As it is clear from the basic approach described here, the value of the quotient bit is determined
by performing a trial subtraction of the form 2Ri − V . If this is positive, then qi = 1, otherwise
qi = 0. Note that when qi = 0, the result of the trial subtraction is 2Ri − V , but the new partial
remainder should be Ri+1 = 2Ri. Based on how this discrepancy is handled in the computations
of qi and Ri+1, two distinct division algorithms can be proposed:

B.1 Restoring Division

Here, at every step, the operation

Ri+1 = 2Ri − V

is performed. When the result of the subtraction is negative, a restoring addition is performed as
follows:

Ri+1 = Ri+1 + V

In other words, the partial remainder is restored to the correct value if the quotient bit is 0.

B.2 Non-Restoring Division

It is based on the observation that a restoring step of the form

Ri = Ri + V

followed by the next partial remainder calculation step

Ri+1 = 2Ri − V

3



can be merged into a single operation

Ri+1 = 2Ri + V

Thus, when the quotient bit qi = 1, then the next partial remainder is computed by performing a
subtraction. However, when the quotient bit qi = 0, rather than restoring the partial remainder,
the next step is the addition of the divisor to the partial remainder, and not a subtraction.

A Word of Caution: In the case of non-restoring division, note that when the last quotient bit
is 0 (that is, q0 = 1), then as a result of the trial subtraction, the partial remainder is negative.
Hence, a correction step is necessary to restore the remainder value. Note that this is necessary
only for the last step.

The restoring and non-restoring division techniques described here are applicable to unsigned
integers as well as sign-magnitude numbers.

4


